

Kristofferson, M. W. When item recognition and visual search functions are similar. Perception and Psychophysics, 1972, 12, 379–384.

Lewis, J. L. Semantic processing of unattended messages using
Lindsay, P. H., & Norman, D. A. Short-term retention during a simultaneous detection task. Perception and Psychophysics, 1969, 5, 201–205.

Massaro, D. W. Preperceptual and synthesized auditory storage. *Studies in human information processing*, University of Wisconsin, 72–1, 1972. (a)

Massaro, D. W. Stimulus information vs. processing time in auditory pattern recognition. *Perception and Psychophysics*, 1972, 12, 50–56. (c)

Massaro, D. W. Acoustic features in speech perception. In D. W. Massaro (Ed.), *Understanding language: an information...
processing analysis of speech perception, reading, and psycholinguistics. New York: Academic Press, in press. (a)

Miller, G. A. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 1956, 63, 81–97.

622 EXPERIMENTAL PSYCHOLOGY AND INFORMATION PROCESSING

Nickerson, R. S. Short-term memory for complex meaningful visual

Pisoni, D. B. On the nature of categorical perception of speech sounds. (Supplement to status report on speech research) Haskins Laboratories, 1971.

Salzberg, P. M., Parks, T. E., Kroll, N. E. A., & Parkinson, S. R. Retro-
active effects of phonemic similarity on short-term recall of
Savin, H. On the successive perception of simultaneous stimuli. Percep-
Scarborough, D. L. Memory for brief visual displays of symbols. Co-
Cognitive Psychology, 1972, 3, 408–429. (a)
Scarborough, D. L. Stimulus modality effects on forgetting in short-
term memory. Journal of Experimental Psychology, 1972, 95,
285–289. (b)
Schvaneveldt, R. W., & Meyer, D. E. Retrieval and comparison
processes in semantic memory. In S. Kornblum (Ed.), Attention
Selfridge, O. G. Pandemonium: A paradigm for learning. In Sym-
posium on the mechanism of thought processes. London: HM
Selfridge, O. G. Pandemonium: A paradigm for learning. In L. Uhr
Segal, S. J., & Fusella, V. Effects of imagery and modes of stimulus
onset on signal-to-noise ratio. British Journal of Psychology,
Segal, S. J., & Fusella, V. Influence of imagined pictures and sounds
on detection of visual and auditory signals. Journal of Experi-
Shank, R. C. Conceptual dependency: a theory of natural language
Shebilske, W. Reading eye movements from an information
processing point of view. In D. W. Massaro (Ed.), Understanding
language: an information processing analysis of speech
perception, reading, and psycholinguistics. New York: Aca-
demic Press, in press.
Shepard, R. N. Circularity in judgments of relative pitch. Journal of
the Acoustical Society of America, 1964, 36, 2346–2353.
Shepard, R. N. Recognition memory for words, sentences, and pic-
tures. Journal of Verbal Learning and Verbal Behavior, 1967,
6, 156–163.
Shepard, R. N., & Metzler, J. Mental rotation of three-dimensional
Shiffrin, R. M. Information persistence in short-term memory. Jo-
Shiffrin, R. M., Craig, J. C., & Cohen, U. On the degree of attention
and capacity-limitations in tactile processing. Perception and

Sternberg, S. Decomposing mental processes with reaction-time data. Copy of invited address, Midwestern Psychological Association, Detroit, May, 1971.

Thomas, I. B., Hill, P. B., Carroll, F. S., & Garcia, B. Temporal order

Wilder, L. Articulatory and acoustic characteristics of speech sounds. In D. W. Massaro (Ed.), *Understanding language: an information processing analysis of speech perception*, read-
Acknowledgment is made to the following for their kind permission to reprint copyrighted material:

Fig. 4.5 from John N. Antrobus, Cognition and affect. Copyright © 1970 by Little, Brown and Co. (Inc.), p. 23. Reprinted with permission of publisher.

Fig. 4.8 from Ulric Neisser, "Visual search." Copyright © 1964 by Scientific American, Inc. All rights reserved.

Fig. 8.9 from George Wald (1945). Copyright 1945 by the American Association for the Advancement of Science.

Figs. 11.8 and 11.9 from Shepard & Metzler (1971). Copyright 1971 by the American Association for the Advancement of Science.

Fig. 13.1 reprinted with permission from Donald E. Broadbent, Perception and Communication, 1956, Pergamon Press, Ltd.

Fig. 13.3 from Guy & Axelrod, "Intraural attention shifting as response." Journal of Experimental Psychology, 1972, 95, 280–284; Fig. 15.5 from Shiffrin & Gardner, "Visual processing capacity and attention control." Journal of Experimental Psychology, 1972, 93, 72–82; Fig. 26.2 from Don Scarbrough, "Stimulus modality effects of forgetting in short-term memory." Journal of Experimental Psychology, 1972, 95, 285–289. Copyright 1972 by the American Psychological Association. Reprinted with permission.

Fig. 14.1 from Donald Norman, "Toward a theory of memory and attention." Psychological Review, 1968, 75, 522–536. Copyright 1968 by the American Psychological Association. Reprinted with permission.

Fig. 20.11 from Peter Ladefoged, Elements of acoustic phonetics. Chicago: University of Chicago Press, 1962. Copyright © 1962 by Peter Ladefoged. All rights reserved.

Fig. 23.3 from Massaro, "Perceptual units in speech recognition." Journal of Experimental Psychology, 1974, 102, 199–208. Copyright 1974 by the American Psychological Association. Reprinted with permission.

Name Index

<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrahamson, A. A.</td>
<td>567–68</td>
</tr>
<tr>
<td>Abramson, A. S.</td>
<td>517–18</td>
</tr>
<tr>
<td>Aquilonius, Franciscus</td>
<td>233</td>
</tr>
<tr>
<td>Albers, Josef</td>
<td>174, 175</td>
</tr>
<tr>
<td>Allard, F.</td>
<td>519–20</td>
</tr>
<tr>
<td>Allmeyer, D. H.</td>
<td>362–63</td>
</tr>
<tr>
<td>Alpern, M.</td>
<td>607</td>
</tr>
<tr>
<td>Anderson, J. A.</td>
<td>606</td>
</tr>
<tr>
<td>Anderson, J. R.</td>
<td>608</td>
</tr>
<tr>
<td>Anderson, N. H.</td>
<td>201–95, 206, 609</td>
</tr>
<tr>
<td>Aristotle, 23, 584</td>
<td></td>
</tr>
<tr>
<td>Arnheim, Rudolf</td>
<td>23</td>
</tr>
<tr>
<td>Arnold, D. C.</td>
<td>375</td>
</tr>
<tr>
<td>Atkinson, R. C.</td>
<td>573, 600, 607</td>
</tr>
<tr>
<td>Averbach, E.</td>
<td>342–47, 355–58, 427, 607</td>
</tr>
<tr>
<td>Axelrod, S.</td>
<td>273–77</td>
</tr>
<tr>
<td>Baddeley, A. D.</td>
<td>608</td>
</tr>
<tr>
<td>Barber, T. X.</td>
<td>605</td>
</tr>
<tr>
<td>Barclay, J. R.</td>
<td>519</td>
</tr>
<tr>
<td>Barnett, L.</td>
<td>428</td>
</tr>
<tr>
<td>Barrett, C.</td>
<td>606</td>
</tr>
<tr>
<td>Bartz, W. H.</td>
<td>608</td>
</tr>
<tr>
<td>Bates, A.</td>
<td>428</td>
</tr>
<tr>
<td>Battig, W. F.</td>
<td>568</td>
</tr>
<tr>
<td>Baxt, N.</td>
<td>371</td>
</tr>
<tr>
<td>Beck, J.</td>
<td>216</td>
</tr>
<tr>
<td>Becker, B. R.</td>
<td>362–64</td>
</tr>
<tr>
<td>Beddoes, M. P.</td>
<td>465</td>
</tr>
<tr>
<td>Beethoven, Ludwig von</td>
<td>9</td>
</tr>
<tr>
<td>Békésy, Georg von</td>
<td>443</td>
</tr>
<tr>
<td>Beller, H. K.</td>
<td>534–35</td>
</tr>
<tr>
<td>Berkeley, George</td>
<td>12</td>
</tr>
<tr>
<td>Bernini, Giovanni</td>
<td>26–27</td>
</tr>
<tr>
<td>Bever, T. G.</td>
<td>609</td>
</tr>
<tr>
<td>Bieber, S. L.</td>
<td>532–33</td>
</tr>
<tr>
<td>Birdsall, T. G.</td>
<td>140</td>
</tr>
<tr>
<td>Boies, S. I.</td>
<td>533–35</td>
</tr>
<tr>
<td>Boomsleiter, P. C.</td>
<td>447</td>
</tr>
<tr>
<td>Boring, E. G.</td>
<td>191, 209–11, 605</td>
</tr>
<tr>
<td>Borromini, Francesco</td>
<td>185</td>
</tr>
<tr>
<td>Bourbon, W. T.</td>
<td>609</td>
</tr>
<tr>
<td>Bower, G. H.</td>
<td>609</td>
</tr>
<tr>
<td>Bransford, J. D.</td>
<td>596–98</td>
</tr>
<tr>
<td>Brentano, Franz</td>
<td>26–27</td>
</tr>
<tr>
<td>Brown, D. R.</td>
<td>546</td>
</tr>
<tr>
<td>Brown, R.</td>
<td>582–84</td>
</tr>
<tr>
<td>Bruno, F. J.</td>
<td>605</td>
</tr>
<tr>
<td>Bryden, M. P.</td>
<td>523–25</td>
</tr>
<tr>
<td>Budiansky, J.</td>
<td>606</td>
</tr>
<tr>
<td>Burnham, R. L.</td>
<td>527</td>
</tr>
<tr>
<td>Cain, W. S.</td>
<td>606</td>
</tr>
<tr>
<td>Carroll, F. S.</td>
<td>468</td>
</tr>
<tr>
<td>Casey, A.</td>
<td>607</td>
</tr>
<tr>
<td>Cattell, James M.</td>
<td>380</td>
</tr>
<tr>
<td>Cherry, E. C.</td>
<td>278–79</td>
</tr>
<tr>
<td>Clark, J. R.</td>
<td>527</td>
</tr>
<tr>
<td>Cohen, U.</td>
<td>301–02</td>
</tr>
<tr>
<td>Cole, R. A.</td>
<td>519–20, 608</td>
</tr>
<tr>
<td>Coles, G. R.</td>
<td>396</td>
</tr>
<tr>
<td>Coltheart, M.</td>
<td>519–20</td>
</tr>
<tr>
<td>Conant, J. B.</td>
<td>231</td>
</tr>
<tr>
<td>Cooper, Franklin</td>
<td>461, 470</td>
</tr>
<tr>
<td>Cortiell, A. S.</td>
<td>342–47, 355–58, 427, 607</td>
</tr>
<tr>
<td>Coren, S.</td>
<td>606</td>
</tr>
<tr>
<td>Cornsweet, T. N.</td>
<td>150, 151, 606, 607</td>
</tr>
<tr>
<td>Craig, J. C.</td>
<td>301–02</td>
</tr>
<tr>
<td>Creak, F. I. M.</td>
<td>608</td>
</tr>
<tr>
<td>Creel, W.</td>
<td>447</td>
</tr>
</tbody>
</table>
James, William, 9, 11, 16, 24, 170–
71, 251, 283, 299, 321, 339, 605
Javal, Émile, 380
Jenks, Jasper, 379
Johnson, A. L., 532–33
Johnson, M. C., 606
Johnson, Samuel, 12
Julesz, B., 607
Juola, J. F., 606

Kahn, B. L., 304–08, 444–46
Kahneman, D., 608
Kamiya, J., 605
Kanizsa, G., 186–87, 606
Kant, Immanuel, 25, 380
Kaufman, L., 102, 195, 207
Kaufer, D. H., 609
Keele, S. W., 533–35, 608
Keesey, U. T., 165
Klein, G. S., 297
Klein, W., 403
Koffka, K., 29, 216
Kohler, W., 29, 35
Koriat, A., 605
Krantz, D. H., 606
Kravetz, S., 607
Kristofferson, A. B., 606, 608
Kristofferson, M. W., 608
Kroll, N. E. A., 532–33
Kuhn, T. S., 605
Külpe, O., 49

Ladefoged, P., 419, 521
Larkin, W. D., 606
Lawrence, D. H., 396
Lawson, E. A., 288
Lazar, R., 78
Lazarus, J. H., 519
Levy, E. J., 527
Lewis, J. L., 296
Lewis, M. Q., 608
Liberman, Alexander, 168–69
Liberman, Alvin, 461, 470, 517–18
Lichtenstein, Roy, 172, 209
Light, L. L., 608
Lindsay, P. F., 309, 326, 332–34, 608
Linker, E., 140
Locke, John, 24
Luca, R. Duncan, 103, 112
Luckiesh, M., 607

Ludwig, Wolfgang, 163–64
Luria, Alexander R., 477, 527
McCabe, L., 255–56
McCain, G., 605
Mackworth, J. F., 544
McCormick, E. M., 605
McCraty, J. W., 504
McGill, W. J., 436–37
MacKay, D. M., 164
McNabb, S., 508–10
McNeill, D., 562–64
Madigan, S. A., 255–56
Mandler, G., 609
Marks, L. E., 606
Marsden, R. P., 164
Massaro, D. W., 198–99, 206, 216–
20, 223–30, 304–11, 318, 325,
390, 393, 396, 430, 432, 437–39,
444–48, 455, 469, 499, 493–94,
508–10, 552, 590, 606, 608
Metell, F., 607
Metzler, J., 221–23
Meyer, D. E., 573–78, 577–81
Miller, George, 249–50, 473, 501,
511, 561
Miller, N. E., 605
Milloidot, M., 164
Monet, Claude, 172
Montague, W. E., 309, 589
Moore, J. J., 308–11
Moore, M. E., 140
Moray, N., 266–67, 270, 279, 288,
300, 428
Morton, J., 608
Mueller, Johannes, 42
Murdock, B. B., 254–55, 606, 608
Murray, D. J., 502–03
Murray, H. G., 606

Nachmias, J., 140
Nakao, M., 277
Nathanson, L. S., 349–50
Neisser, U., 78, 81–83, 290–91, 606
Nickerson, R. S., 537, 606
Norman, Donald A., 279–81, 283–
86, 326, 332–34, 501, 550, 553,
556–58, 605, 606
Novick, R., 78

Obusek, C. J., 457
Ogle, K. N., 607

NAME INDEX 637
O'Keeffe, Georgia, 173, 174
Oser, H., 378
Paap, K., 608, 609
Paivio, A., 538, 609
Park, J. N., 216, 607
Parkinson, S. R., 532–33
Parks, T. R., 532–33
Patterson, J. H., 451
Pavlov, I., 28
Perky, C. W., 322–23
Peterson, L. R., 530
Peterson, M. J., 530
Pick, A., 378
Pillsbury, W. B., 380
Pinson, E. N., 408, 418, 608
Pirenne, Maurice, 143, 150, 151, 156, 366, 375
Pisoni, D. B., 471–72, 517–19, 609
Plato, 9–10, 193, 583, 584
Plomp, R., 463
Pohlmann, L. D., 300
Pols, L. C. W., 463
Potter, R. K., 537
Powers, S. R., 447
Ptolemy, 189

Radford, J., 605
Rancurello, A. C., 605
Rawlings, S. C., 607
Reicher, G. M., 384–86, 397
Reid, Thomas, 24, 212
Reitman, J. S., 545–46
Reste, F., 206
Riley, Bridget, 165–67, 176–77, 351
Rilling, M. E., 606
Rips, L. J., 609
Robinson Crusoe, 182
Robinson, J. O., 607
Rock, I., 192, 195, 207
Rosen, B. E., 216
Rostron, A. B., 428
Rousseau, Henri, 190–91
Rubens, Peter Paul, 232–33
Ruddy, M. C., 580–81
Rumelhart, D. E., 567–68

St. Augustine, 405
St. Theresa, 25–26

Salzberg, P. M., 532–33
Savin, H., 268–69
Scarborough, D. L., 530–31, 538
Schmuller, J., 608
Schaneveldt, R. W., 573–76, 577–81
Scott, B., 608
Segal, E. M., 605
Segal, S. J., 323–24
Selfridge, O. G., 400
Seurat, Georges, vi, 169, 171
Shank, R. C., 609
Shankweiler, D. P., 470
Shapiro, D., 605
Shobiske, W., 351, 608
Shepard, R. N., 221–23, 482, 537
Shifrin, R. M., 301–3, 311–18, 548–50, 558, 607
Shipley, T., 607
Slhaer, Simon, 143–48, 156, 366, 375
Shobin, E. J., 609
Shulman, H. C., 325
Shuntich, R., 364–65
Siegel, J. A., 608
Skinner, B. F., 28
Smith, E. E., 394, 397, 600
Smith, Frank, 377, 608
Smith, Sydney, 249–50
Solberg, K. B., 609
Sorkin, R. D., 300
Spencer, T. J., 384–85
Sperry, R. W., 605
Spivak, J. G., 606
Standing, L. C., 348–52, 362, 440
Steinman, R. M., 140
Sternberg, Saul, 49–51, 63, 73–75, 79, 81–83, 523, 606
Stevens, S. S., 606
Stoyva, J., 605
Stroop, J. R., 297
Studdert-Kennedy, M., 470
Suen, C. Y., 465
Swets, John A., 119
Swinton, G., 608

Tanner, W. P., 140
Taylor, M. M., 309
Taylor, R. I., 533–35
Taylor, S. G., 346
Taylor, W. K., 278
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tauber, M. L.</td>
<td>607</td>
</tr>
<tr>
<td>Theios, J.</td>
<td>61, 593, 606</td>
</tr>
<tr>
<td>Thiebaud, Wayne</td>
<td>173, 174</td>
</tr>
<tr>
<td>Thomas, I. B.</td>
<td>456</td>
</tr>
<tr>
<td>Thompson, M. C.</td>
<td>390, 393, 397</td>
</tr>
<tr>
<td>Thomson, D. M.</td>
<td>609</td>
</tr>
<tr>
<td>Thorndike, E. L.</td>
<td>28</td>
</tr>
<tr>
<td>Thurlow, W. R.</td>
<td>608</td>
</tr>
<tr>
<td>Tinker, M. A.</td>
<td>375</td>
</tr>
<tr>
<td>Titchener, Edward B.</td>
<td>1, 322</td>
</tr>
<tr>
<td>Townsend, J.</td>
<td>346</td>
</tr>
<tr>
<td>Trask, F. P.</td>
<td>272</td>
</tr>
<tr>
<td>Treisman, M.</td>
<td>428</td>
</tr>
<tr>
<td>Tulving, E.</td>
<td>609</td>
</tr>
<tr>
<td>Turvey, M. T.</td>
<td>368–71, 428–30, 607, 608</td>
</tr>
<tr>
<td>Tversky, B.</td>
<td>535–37</td>
</tr>
<tr>
<td>Vasarely, Victor</td>
<td>168, 170, 175, 176, 178, 179</td>
</tr>
<tr>
<td>von Wright, J. M.</td>
<td>607</td>
</tr>
<tr>
<td>Waite, H.</td>
<td>198–99</td>
</tr>
<tr>
<td>Wald, G.</td>
<td>155</td>
</tr>
<tr>
<td>Warren, R. M.</td>
<td>457, 607</td>
</tr>
<tr>
<td>Warren, R. P.</td>
<td>457, 607</td>
</tr>
<tr>
<td>Watson, C. S.</td>
<td>606</td>
</tr>
<tr>
<td>Watson, John B.</td>
<td>28</td>
</tr>
<tr>
<td>Waugh, Nancy C.</td>
<td>501, 550, 553, 556–68</td>
</tr>
<tr>
<td>Wedderburn, A.</td>
<td>264–65</td>
</tr>
<tr>
<td>Welton, K. E.</td>
<td>586–88</td>
</tr>
<tr>
<td>Wertheimer, Max</td>
<td>29, 605</td>
</tr>
<tr>
<td>Wescourt, K. T.</td>
<td>573</td>
</tr>
<tr>
<td>Wheeler, D. D.</td>
<td>386</td>
</tr>
<tr>
<td>Wickelgren, W. A.</td>
<td>496–97, 561, 609</td>
</tr>
<tr>
<td>Wilder, L.</td>
<td>608</td>
</tr>
<tr>
<td>Winnick, W. A.</td>
<td>216</td>
</tr>
<tr>
<td>Woodworth, Robert S.</td>
<td>463, 200, 606, 608</td>
</tr>
<tr>
<td>Wooldridge, D. E.</td>
<td>605</td>
</tr>
<tr>
<td>Wundt, Wilhelm</td>
<td>25, 26, 380, 381</td>
</tr>
<tr>
<td>Yarbus, A. L.</td>
<td>607</td>
</tr>
<tr>
<td>Ynetema, D. B.</td>
<td>272</td>
</tr>
</tbody>
</table>
Absolute judgment task, 448
Absolute threshold. See Threshold
ABX task, 516–17
and SAM, 518–19
Accommodation, 164–66
Acoustic features, 463
Acquisition process, 326–27
Act psychology, 26–28
Acuity. See Visual acuity
Additive effects, 50–51, 54–57
Additive-factor method, 51–57, 74,
273, 521–22
compared to subtractive method,
57–61
and memory search, 63–83
Afterimages:
description of, 166–68
and eye movements, 163–64,
169–69
and preperceptual visual store,
361
Allophones, 463–64
All-or-none learning, 588–89
vs. incremental learning, 592–96
Alpha waves, 13–14
Analogies, 567–68
models as, 65
Analysis-by-synthesis. See Neisser's model
Analysis of variance, 76
Anchors, 202
Ants and jelly, 596
A priori probability, 128–31
Aristotelian theories:
of concept learning, 584
of motion, 23, 28–29
Art:
as experiment, 162
and perception, 162–81
Assimilation, 209–01
Association, 542–43, 575–80
temporal course of, 580–81
Attention:
across dimensions, 308–11
across modalities, 304–06
across spatial location, 315–18
between processing stages, 320–36
Broadbent's model of, 259–62
and counting, 276–77
and 'Dear Aunt Jane task,' 264
dichotic clicks, 274–76
Gardner's decision model of,
312–15
and imagination, 322–24
limited capacity processor for,
262
and memory, 278–81
models of, 282–98
and processing stages, 291–94
shadowing, 278–81
and selective perception, 398–
403
split-span tasks, 262–73
and task difficulty, 206–07
within processing stages, 296–
320
Attenuation:
in Treisman's model, 209
Attitude:
in psychophysical task, 97–98
Auditory masking:
backward masking, 304–11, 435–
440, 444–46, 454–57, 465–68,
471–73, 493–94
control for loudness in, 436–37
description of, 437–38
Auditory masking—(Cont.)
backward masking—(Cont.)
and duration of masking stimulus, 493–95
vs. forward masking, 453–54
forward masking:
description of, 453
vs. backward masking, 453–54
Auditory perception. See also
Hearing
acoustic features, 463
and attention, 304–11, 325
categorical, 511–19
of competing messages, 295
and memory, 325
and stimulus duration, 447–49
Averaging, cautions against, 363–64, 589–90
Averbach and Coriell study, 342–45, 355–58
Axelrod and Guzy experiments, 273–76

Basilar membrane, 413
Before—after experiment, 398–403
Behaviorism, 12, 14, 28–30
Between-subjects designs, 218
Binaural presentation, 270
defined, 433, 472–73
Binocular perception, 206–38
Bio-feedback training, 12
Blindspot, 144, 151
'Blips and blaps,' 449–52
Blivets. See Impossible figures
Brain waves, 13
Broadbent and Gregory study, 265–66

Cartesian interactionism, 10–11
Categorical perception, 511–19
description of, 511
Category norms, 566
Ceiling effect, 498, 548
Choice RT task, 41
Clicks, 273
Cochlea, 413
Color:
description of, 528
memory for, 527–29
mixing, 168–69

Color—(Cont.)
Munsell patches, 528
Competing messages, 295
see also Shadowing
Computer:
description of, 18, 19
language of, 18
programs, 66–67, 67–70, 71–73
for memory search, 65–73
as models, 65
Concept learning, 594–95
Conceptual codes:
and discrete nodes, 578
and perceptual codes, 563–64
and semantic features, 576–78
Conditional probability, 105, 121
Cones, 144
Confidence ratings, 128, 597
Confounding, 33, 309, 372, 597, 583
processes, 36
Confusion matrix, 98–99, 136–37
Consciousness, 15, 26–28, 260
and short-term memory, 257
see also Mind-body problem
Consonant recognition, 469–70, 470–71, 471–73
Consonant sounds, 418–21
Consonant-vowel syllable recognition. See CV syllable recognition
Constancies. See Size constancy,
Shape constancy
Constancy scaling:
role in illusions, 189–90, 193
Content-addressable search, 71–75
Contrast, 209–01
Convergence. See Vergence eye movements
Cornea, 144
Correlation, 198
Counterbalancing, 33, 52
Counting:
sounds, 276–77
taps, 277
Creativity, 17–19
suggested readings in, 605
CV syllables, 470–74
d’. See also Multistate theory
calculation of, 131–34, 138
as measure of auditory perception, 325, 454–56, 466–69
d'—(Cont.)
as measure of memory, 280, 331–34, 486–89, 507–10, 552–57
as measure of memory for pitch, 490, 496–97
as measure of visual perception, 366–69
and percentage correct, 438
Dark-adaptation, 146–48, 166–67
dB. See Decibel
Decay theory, 486–89, 541–42, 543–45
vs. interference theory, 545–50
quantitative representation of, 486–89
Decibel, 94
Decision bias, 97, 446
measure of, 134–35
Decision criterion:
in multistate theory, 120
Decision process:
in delayed comparison task, 484
in letter recognition, 400–03
in memory task, 330
in psychophysical task, 104
Delayed comparison task, 478–79
memory for color in, 528–29
memory for pitch in, 479–99
task considerations in, 479–81
Demons, 400–03
Dependent variables, 31
Detection, 16, 39–41, 293
attentional effects in, 299–302
and imagination, 322–24
of light, 142–59
and memory, 321
stage of, 104
tactile, 301–02
Detection time, 39
Deutsch-Norman model, 283–85, 286–87
Dice game, 121–30
as analogy to signal detection task, 121–22
Dichotic listening. See Split-span tasks
Dichotic presentation:
defined, 471
Dissimilarity ratings, 564–67
Divergence. See Vergence eye movements
Dominant hand, 53

Dot patterns, 586–88
Dumbbell illusion, 196
Dynes, 93, 408

Ear, 412–13
Eardrum, 413
Ebbinghaus illusion, 200, 206–07
Echo box, 501
Empiricism:
British empiricists, 24
as theory of knowledge, 24–25
English language, 382
consonant sounds in, 418–21
rules of, 573
Epiphenomenalism, 12, 14
see also Mind-body problem
Eriksen and Eriksen study, 372–75
Errors in RT tasks, 81, 219
Estimating parameters. See Parameter estimates
Euclidean space:
animal, 565
Exhaustive search, 67–70
Experimental control, 33
Experimental design, 34–36, 78
Experimental method, 31, 37
and between-subjects designs, 218
and confounding processes, 36
and counterbalancing, 52
and data analysis, 135–36
and dependent variables, 31
for evaluating memory processes, 559
and factorial designs, 52
of partial report, 432
for replicating experiments, 363
and stimulus confoundings, 309
and within-subject designs, 218

Eye:
accommodating of the, 164–66
high frequency tremor of the, 163–64
structure of, 144

Eye movements:
accommodation, 164–66
nystagmus, 169–64
saccadic, 168–69, 235, 340–41, 379
vergence, 235
Factorial designs, 52, 218
False alarms, 98
Familiarity, 326–32, 508–09
 in memory for pitch, 481–84, 492–93
Fechner’s psychophysical law, 93–95
Fechner’s psychophysical methods,
 See Psychophysical methods
Feedback, 437
Figure-ground contrast, 359–61
Filter:
 in Broadbent’s model, 260–62
Fire alarm scenario, 39–41
Forgetting, 254
 and attention, 332–35
 in long-term memory, 561
 in partial report task, 431–32
 see also Memory
Formant, 416–17, 420–23
 transitions, 422
Fovea, 144
Free recall task:
 criticism of, 549–50
 defined, 254
Fruitive sounds, 420–21
Functional components:
 of information-processing model, 19–21
Functional relationship, 32
Fundamental frequency, 414–15, 416–18
Hamilton’s law, 241
Harmonics, 415
Hearing:
 dimensions of, 404–23
 integration, 446–52, 454
 interruption, 452–54
 perceptual processing time, 442–59
 see also Auditory perception
Hecht, Shlaer, and Firenne experi-
 ment, 144–158
Hertz:
 definition of, 409
Hierarchical organization, 569–70
High threshold theory, 106
Hirsh study, 449–52
Histograms, 329–30
Hits, 98
Holway and Boring’s experiment, 209–11
Homophones, 563
Horopter, 232
Hue:
 and dark adaptation, 154–55
 definition of, 528
 recognition, 528
Hypotheses:
 in reading, 381
Hypothetical data, 593–96
Idealism, 12
Identification. See Recognition
Identification time. See Recognition
 time
Illustrations, 192–208
 assimilation in, 200–01
 blivets, 183–85
 constancy scaling in, 189–90
 contrast in, 200–01
 Ebbinghaus, 200, 206–07
 geometrical, 196
 impossible scenarios, 180, 186–88
 moon illusion, 188–93, 206–07
 Müller-Lyer, 184, 197–99
 Palazzo Spada, 185–87
 perspective theory of, 198–99
 size-weight, 201–05
 total impression theory, 200–05, 206–07
 Illusory contours, 179
Imagination:
and detection, 322–24
Perky's study of, 322–23
rotation in, 221
Immediate memory, 242–44, 585
see also Short-term memory,
Memory, Working memory
Impossible figures:
blivets, 183
Impossible scenarios, 180, 186–88
Incremental learning, 598–99
vs. all-or-none learning, 592–96
Independent processes, 50
Independent variables, 32–35
number of levels in, 348
Individual differences, 362–64, 440
Inductive inference, 212–14
Information processing, 1, 19–21
Information-processing model:
of attention, 291–95
of auditory recognition, 454–57
of categorical perception, 512–15
of delayed comparison task, 481–86
description of, 19–21
of fire alarm scenario, 39–42
general, 599–602
of letter recognition, 400–03
of memory task, 326–35
of memory search task, 64–65
of QRST task, 251–52
of same-different RT task, 520–21
of shape judgment task, 217
of shape perception, 237
of split-span task, 267–68
of two auditory recognition
stages, 477–78
of visual recognition, 366–68
of visual recognition task, 248
of word recognition, 386–90
Inner ear, 413
Insofar as we can see, 585
Integration:
in hearing, 446–52, 454
in visual detection, 153–54
in visual perception, 359–61, 372
Intensity. See Stimulus intensity
Interaction, 55–57, 272
Intercept, 60
Interference:
with GAM, 552–58
Interference—(Cont.)
with SAM, 489–92
with SVM, 534
Interference theory, 489, 542–43
vs. decay theory, 545–50
of GAM, 542–45
of SAM, 469
and similarity, 489
Interruption:
in hearing, 452–54
in visual perception, 361–68
Interstimulus interval, 356–59
Introspection, 24–28
Invariance hypothesis:
algorithm, 229–31
of shape perception, 215–16
of size perception, 214–15
tests of, 214–31
ISI. See Interstimulus interval

Just noticeable difference, 479
Knowledge:
and perception, 161–62
Language:
foreign, 24
and long-term memory, 563–65
and semantic features, 577–78
and word recognition, 573–81
Larynx, 413
Latency. See Reaction time
Lateral masking, 344–46
Learning, 582–98
concepts, 584
curves, 589
prototype, 586–88
and recognition, 595
theories, 588–89
See also Practice
Letter matching, 533
Letter memory, 529–33, 544–45
Letter recognition, 378, 384–403
and attention, 311–18, 396
and similarity, 390–94, 396–97
See also Reading, Word recogni-
tion
Lexical decision, 573–75
Light:
description of, 143
detection, 144–58

Subject Index 645
Light—(Cont.)
 masking stimulus, 444-46
 receptors, 144
Light sensitivity:
 and dark-adaptation, 146-48
 and duration of test flash, 153-54
 and location of test flash, 148-51
 optimal level of, 155-57
 and size of test flash, 151-53
 and wavelength of test flash, 154
Likelihood ratio, 121
Limited-capacity processor, 262
 see also Broadbent's theory
Linear function, 69
Lindsay and Norman study, 328-35
Logarithms:
 description of, 82
 and forgetting functions, 328-29, 487-88
 of geometric equations, 486-88
 and power functions, 193-94
Log-linear plots, 328-29, 332-33, 487
Log-log plots, 195
Long-term memory, 560-62
 organization of, 565-67, 568-80
Malleus, 413
Masking. See Auditory backward masking, Lateral masking, Visual backward masking
Materialism, 11
Melodies, 590
Memory:
 and attention, 325-34
 color, 527-29
 and detection, 321
 and discrete nodes, 578
 evaluating processes, 559
 for faces and names, 535-37
 forgetting, 254-57, 431-32, 492, 541, 558, 561-82
 CAM, 540-49
 and hierarchical organization, 568-73
 for ideas, 506-97
 for letters, 529-33
 long-term, 254-57, 560-81
 and perception, 170-72
 picture memory, 537-36
 for pitch, 479, 489-99
Memory—(Cont.)
 probe recall, 550
 probe recognition, 326
 recall, 501-07
 and recognition, 242, 325
 SAM, 476-99
 search, 63-78
 search and comparison, 568-73
 for sentences, 596-98
 set size, 73
 for spatial relations, 597-98
 tones, 446
 for voice quality, 519-23
 working, 250-51, 254-57
Memory drum, 506
Memory search:
 content addressable, 71-73
 exhaustive, 67-70
 self-terminating, 66-67
Memory strength, 552-57
 stages of, 39-41
Meno, 583-84
Mental operations, 16-21
Mental processing:
 stages of, 39-41
Method of adjustment, 90, 527
Method of association, 565-66
Method of constant stimuli, 91
Method of limits, 89-90
Method of magnitude estimation, 193-95
Method of parameter estimation, 204-05
Meyer and Schvaneveldt studies, 573-81
Middle ear, 413
 and sensitivity, 413
Mind-body problem, 1, 9-16
 monism, 15-16
Models, 95
 and parameter estimates, 205
Monocular perception, 160
Moon illusion, 189-93, 206-07
Moray study, 266
Motivation, in psychophysical task, 97
Müller-Lyer figure, 184
Multistate theory, 119-41
 dice game model, 121-31
 likelihood ratio, 121
 measure of decision bias, 135
 measure of sensitivity, 130-35
Multistate theory—(Cont.)
signal detection experiment, 135
vs. two-state theory, 139–41
Munsell colors, 528

Nasal sounds, 420–21, 573
Neisser model, 290–91
Neisser tasks, 78–81
compared to Sternberg task, 81–82
effect of practice in, 82–83
suggested readings in, 606
Nerve conduction velocity, 42–43
Noise, 412, 415
description of, 95
in sensory system, 95–97
white noise, 412–15
Nondominant hand, 53
Normal distributions, 95, 131–35
description of, 132–33
and dice game distributions, 131
and ogive curves, 95
and sensitivity measure, 136–38
and table of z scores, 133–34
and z scores, 132–35
Norman study, 279–81
Nystagmus, 163–64

Ogive curves:
and normal distribution, 95
Optical illusions. See Illusions
Order effects, 35, 52
Organization:
in memory search, 569–70
Orthographic rules, 382–84, 573
Oscilloscope, 13

Palazzo Spada, 185–187
Pandemonium model, 400
Panum’s area, 234–39
Parameter estimates, 204–05, 332–33, 455–56, 467–68, 488–89, 490–97, 510
defined, 205
Partial report, 244–48, 426–35
experimental study of, 432–33
guessing in, 432–35
see also Averbach & Coriell study
Payoffs, 99
Perceived duration:
of sounds, 440–41
of visual stimuli, 304–06, 350–52
Percentage correct:
as dependent measure, 244–48
and d’ values, 438
in psychophysical task, 130–31
Perception. See Auditory perception, Recognition, Visual perception
Perceptual codes:
and conceptual codes, 563–64
Perceptual processing theory, 552–59
Perceptual processing time:
for hearing, 442–59
for nonsense sounds, 457–58
for seeing, 354–75
for speech sounds, 458
Perceptual units
in reading, 376–403
in speech, 460–74
Perky studies, 322–23
Perspective cues, 173–79
Perspective theory, 197–99
see also Constancy scaling
Peterson and Peterson task, 530–31
Pharynx, 413
Phonemes, 463–65
Phonemic similarity, 532–33
Picture memory, 537–38
Pineal gland, 10
Pitch:
channels, 277–78
identifying, 437–38
individual differences in perceiving, 440
memory for, 479, 494–97
perception of, 448–49
similarity in, 481–82
Pitch perception:
and tone duration, 447–50
see also Auditory backward masking
Platonic dualism, 10,
see also Mind-body problem
Platonic theory of concept learning, 584
POE. See Point of subjective equality
Pointillism, 169, 171
Point of objective equality, 274
Point of subjective equality, 274–75
Poisson process, 157
Power function, 193–95
Power spectrum:
of sound, 409–12
Practice, 35, 52, 127, 216, 445, 583
see also Learning
Preperceptual auditory image. See
Preperceptual auditory storage
Preperceptual auditory storage,
424–41, 493–97
and CAM, 497–99
properties of, 348–50
and SAM, 493–97
Preperceptual visual image. See
Preperceptual visual storage
Preperceptual visual storage, 338,
339–41,
and afterimages, 351
properties of, 349–52
Primary, 334
Primary recognition, 477–78
Prior entry, 259
Probabilistic threshold. See Threshold
Probability distribution, 95
and dice game, 121–31
see also Normal distributions
Probe recall, 550
Probe recognition, 326, 507–10
Processing capacity. See Attention
Projected shape, 227
Prototype learning, 584–85, 586–88,
590–92
PSE. See Point of subjective equality
Psychophysical method:
of adjustment, 90
attitude of observer in, 97–98
choice of stimulus levels, 91–93
of constant stimuli, 91
keeping observer honest in, 98–99
of limits, 89–90
motivation of observer in, 99–100
in signal detection task, 98
Psychophysical task:
stage model of, 103–04
see also Psychophysical method
QRST task, 251–52, 253
Quantum theory, 143, 151–53
Randomization, 33, 218, 583
Reaction time:
and attention, 543–44
choice vs. simple tasks, 44–47, 58
in letter matching, 533–35
of lexical decisions, 573
and memory, 543–44
and mental rotation, 233
for naming, 58–61
in Neisser task, 78–83
and number of alternatives 57–81
in same-different task, 535–37
and semantic similarity, 568–73
of shadowing, 296–97
of shape perception, 216–38
in Sternberg task, 73–78
and stimulus intensity, 496–37
tests of invariance hypothesis, 218–38
of word recognition, 573–81
see also Additive-factor method,
Subtractive method, 39, 42–51
Reading, 339, 376–403
visual features, 378
see also Letter recognition, Word recognition
Recall, 501–07
Recoding, 249–50
Recognition masking. See Auditory backward masking,
Auditory forward masking,
Visual backward masking,
Visual forward masking
Recognition, 40–42, 293, 339–40
attentional effects in, 393–19, 325,
334–35
and memory, 242, 325, 334–35
temporal course of, 341, 366–71
time, in visual perception, 371–75
of words, 373–81
see also Auditory perception,
Visual perception
Recognition time, 41
Redundancy:
in reading, 382–84
in word recognition, 387–92, 393–98
Rehearsal, 248–49, 255
subvocal, 73–74
Reicher paradigm, 384–86
and letter similarity, 390–91
models of, 386–90
Reitman study, 454–58
Relative scale, 504–06
Repetition:
 covert, 502
 overt, 502, 509–10
 overt vs. covert, 509–10
Replicating experiments, 362–64
Research, 24–30
Response bias. See Decision bias
Response compatibility, 51–57, 58–61
Response selection, 104
Response selection time, 41
Retention process, 326–34
 see also Forgetting, Memory
Retina, 144, 150
Retinal size match, 210
Retrieval process, 327–28
 in split-span task, 272
 strategy, 272
 see also Memory
ROC curves, 110–11, 131
Roda, 144, 154
 density of, 150
 variability of firing, 157–58
Rotation hypothesis, 221
RT. See Reaction time

Saccadic eye movements, 166–69, 235, 340–41, 380
 and foveal viewing, 235
 in reading, 340–41
SAM [synthesized auditory memory] 470–99, 523
 components, 506–07
 contributions, 511–12
 and CAM, 523–25
 and preperceptual auditory storage, 493–97
 for speech sounds, 500–25
Sampling:
 with replacement, 35
 without replacement, 35
Savin study, 268–69
Schematic faces, 536
Secondary recognition, 477–78, 541
Segal and Fusella studies, 323–24
Selective attention. See Attention
Selective perception, 398–403
Selfridge's Pandemonium model, 400
Self-terminating search, 66–67

Semantic features, 577–79
Semilogarithmic plot. See Log-linear plot
Sensation, 24
 and perception, 24, 209
 and psychophysics, 88
 time, 39–41
Sensory system.
 measure of sensitivity, 131–35
 models of, 105–12
 see also Threshold theories
Sensory threshold. See Threshold
Serial position curves, 255, 502–04
 with relative scale, 504–06
Serial presentation and recall task, 501–02
 SAM and GAM components in, 506–07
Serial search:
 exhaustive, 67–70
 self-terminating, 66–67
Set, 289
 see also Selective perception
Sextant, 562
Shadowing, 278–81, 286–88, 295, 296, 532
Shape constancy, 211–12
Shape judgment task, 217
Shepard and Metzler task, 221
Shiffrin study, 548–50
Short-term memory:
 limitation of, 242–44, 342–43
 see also GAM, Immediate memory, SAM, Working memory
Short-term store
 of Broadbent's model, 261–62
Signal detection task
 a priori probability, 140
 confidence ratings in, 139
 method and data analysis for, 136–38
Signal detection theory. See Multi-state theory
Signal-to-noise ratio, 359
Sign:
 in reading, 377–79
 in speech, 461–62
Simple RT task, 44
Simulated subject, 593–96
Sine waves, 406, 407–09
Size constancy, 169–90, 209–11
Size-weight illusion, 201–05
Slits and pieces, 348
Slope, 70
SOA, 365
Soul, 10, 563
Sound:
 clicks, 273
 complex patterns of, 409–412
 description of, 405–09
 nonsense, 457–58
 perceived duration of, 440–41
 power spectra of, 409–12
 pressure, 407–08
 white noise, 412, 415
Sound spectrogram, 420–23
 of /dɪ/ and /dɑː/, 423, 470
 of /ba/, /da/, /ga/, 516
 of /iː/, /i/, and /eː/, 517, 518
Sound spectrograph, 422–23
Span of apprehension, 240
Speech, 460–75
 organs of, 413–14
 recognition, 460–75
 see also Categorical perception
Speech organs, 413–14
Speech perception, 460–75
Speech production, 413–15, 419
Speech sounds, 413–23, 458–59
 consonants, 517–18
 synthesized, 422–23
 voiced, 414–15
 voiceless, 415
 vowel, 417–18, 419
Sperling study, 241–47, 371–72, 374, 427
Split-span tasks, 262–73, 523–25
Stabilized image, 163, 164–66
Stages of mental processing, 19, 21
 see also Additive-factor method,
 Information-processing model, Subtractive method
Stars:
 and Fechner's psychophysical law, 96
Statistics, 353
 analysis of variance, 70
Sternberg task, 63–64, 73–78, 521–23, 588–73
 compared to Neisser task, 81–82
 suggested readings in, 606
Stimulus and response, 10–19
 stages between, 19–21
Stimulus confounding, 309
Stimulus intensity:
 and reaction time, 43–44, 53–57
Stimulus onset asynchrony. See SOA
Stimulus-response compatibility. See Response compatibility
Stimulus-response psychology, 28
Stop consonants, 419–20, 573
Strategies:
 control for, 218
 roop color-word effect, 297
Storage process. See Acquisition process
Structural components:
 of information-processing model, 19–21
Subject differences, 362–64, 440
Subliminal perception, 101
Subtractive method, 42–43, 57
 A, B, and C tasks, 47–48
 compared to additive-factor method, 57–61
 criticism of, 48–49
 Sternberg's modification, 49–51
 see also Reaction time
SVM (synthesized visual memory), 526–39
 independence from GAM, 538–39
 interference with, 534–35
Synthesized auditory memory. See SAM
Synthesized auditory storage. See SAM
Synthesized speech sounds, 422–23
Synthesized visual memory. See SVM
Switching time, 271

Tachistoscope, 241, 341
Tactile detection, 301–02
 "That you may see," 420–21
Theory:
 the role of in research, 24
 Theory of signal detectability. See Multistate theory
Threshold, 88
 and Fechner's psychophysical law, 93–95
 probabilistic, 106–06
 variability of, 96–97
 see also Threshold theory
Threshold theory:
Fechner's, 93–95
general two-state, 112–16
high threshold, 106–12
"Tip of the tongue" state, 562–63
Total impression theory, 206–06, 207
Trachea, 413
Transition matrices, 107
and two-stage theories, 106–11, 112–16, 118–29
Treisman model, 288–90
Treisman study, 269–72
Turtles and logs, 597
Turvey study, 368–71
Two-process model, 366
Two-state theory, 112–17
and multistate theory, 139–41

Unattended channels, 278–79
U-shaped functions, 355–57, 362–64, 368–71

Variables, 31–35
control of, 32–35
dependent, 31
independent, 31
Vergence angle, 234
Vergence eye movements, 235
Vibratory taps, 277
Violin note, 410–11
power spectrum of, 411
Virtue, 584–85
Vision:
acuity, 344–46
lateral masking, 344–46
see also Visual perception
Visual acuity, 344–46
and color mixing, 188–89
individual differences, 94
and nyctalopus, 165
Visual angle, 152–53
Visual codes, 533–35
Visual detection. See Light detection
Visual features, 367, 378
Visual imagery, 598
Visual masking, 358–59
backward masking, 358–59
vs. forward masking, 364–66
and masking stimulus, 371–72
Visual masking—(Cont.)
backward masking—(Cont.)
and test stimulus duration, 371–75
two-process model of, 366
forward masking, 358–59
vs. backward masking, 364–66
two-process model of, 366
see also Lateral masking
Visual perception:
and art, 162
binocular, 208–38
and eye movements, 162–69
of illusory contours, 178–79
of impossible scenarios, 180–81
and knowledge, 161–62
and lateral masking, 344–46
and memory, 170–72
monocular, 160–81
and perspective cues, 173–78
reversibility of, 179–80
and sensation, 24, 239
and stimulus duration, 348–52
see also Illusions, Recognition,
Reading
Visual scanning. See Neisser task
Vocal cords, 413, 414–15
Vowel recognition, 405–06, 469
Vowel sounds, 417–18, 464–65
wave shapes of /l/ and /i/, 464

Waugh and Norman study, 550–57
Waves
Sine waves, 407–09
sound waves, 407–09
White noise, 412–15
and normal distribution, 95
power spectrum of, 411
Within-subject designs, 218
Working memory, 250
and long-term memory, 254
see also Immediate memory,
Short-term memory

z scores:
and d' values, 136–38
and normal distribution, 132–35
table of, 133
Zeros and Ones, 593

Printed in U.S.A.